

Expression of Interest (EOI) Questionnaire

Name of the contact person for this submission: DIMA Mihai-Octavian

Institutions involved in this submission: no institution involved (I am however employee of the

Inst. For Nuclear Physics and Engr. – Romania (Computational Phys. Dept.), and Habil. Prof.

in the Electronics Dept. of the Polytechnical Univ. – These institutions have rather lengthy

procedures for formal involvement, but I can inquire if and the extent they would consider for

involvement.)

Items of interest for potential cooperation: software

Level of potential contribution: in-kind: software development – see attached.

Assumptions made as coming from the EIC Project/labs for items of interest: none.

Labor contribution for the EIC experimental equipment activities: currently myself: 30%

FTE, but am searching for grad students interested.

Timing constraints to your submission: none.

Other information: see attachment.

Scientific software for EIC

 Contact:

 Mihai-Octavian Dima

 Senior Researcher-I (PI) | Habilitated Professor
 Computational Phys. Dept. | Electronics Dept. PhD School
 http://dfcti.ifin.ro | www.sdettib.pub.ro/articole/28
 e-mail: modima@cern.ch |
 modima@nipne.ro | tel. : +40-724-502-557
 http://cern.ch/modima | (handy)
 Inst. for Nuclear Phys. & Engr. | Polytechnical Univ.
 http://www.nipne.ro | http://www.upb.ro
 Bucharest - Romania | Bucharest - Romania

 Software

 A number of proficient solutions that appear in science and engineering entail advanced objects or

methods.

 Often the "pen_on_paper" solution is simple, elegant and powerful.

 However, implementing it in the computer can mean hundreds (more often thousands) of highly

skilled man hours.

 Example: a polymorphic C++ class for complex numbers has 500+ afferent operator

instantiations for operators in all combinations. Yet, these must be outside of class, for it to retain

memory allocation speed, must have move semantix implemented (even without a resource), etc.

 My work in this direction has been that of fielding software for science and engineering to reach

"pen_on_paper" capability in working with computers.

 We do want very much those math objects because of their high power and do not want to go back

to programming bit by bit.

 Example: solution to dispersive wave-equation with SU(2) scalars (see attached). Note (in blue)

the simplicity of transcribing the propagator.

 Illustratively, the SU2 class has over 1100 operator instantiations, allowing it the polymorphic

flexibility needed:

 With this capability, more advanced solutions can be built, like this show-case: non-abelian Weyl-

Wigner FFT (see attached).

sxy C++ / Transmission line
 v1.3.2(β) / 14.12.2019 Mihai T. Dima, student Physics, Bucharest Univ.

Description

 The code represents an application of the SU2 suite for SU(2) spinors.

 One showcase application is the solution to the transmission-line equation:

 We will take the second embodiment of the solution, as the more physical of the two and
implement it as a propagator.

We will add a few harmonics and let them propagate. The code computes both the voltage
and the current.

sxy simulation code
 v1.3.2(β) / 14.12.2019 Mihai T. Dima, student Physics, Bucharest Univ.

// code : test SU2 package
//
// author : M. Dima
// Inst. for Nuclear Phys. & Engr.
//
// date : NXV4 / Sat Dec 3 17:13:57 CET 2016
//
//***
//
#include <cmath>
#include <string>
#include <stdio.h>
#include <iostream>
#include <iomanip>

#include "cpx.hh"
#include "su2.hh"
#include "psi.hh"

using namespace std ;
using namespace cpx4 ;
using namespace su24 ;
using namespace psi4 ;

 using dblx = double ;
 using real = long double ;

 real pi = 3.14159265358979323846264L ;
 real e = 2.71828182845904523536028L ;

 real Ld = 100.0 ;
 real c = 3.0E8 * 0.65 ;

 auto j = cpx<real>(0,1) ;

 auto sx = su2<cpx<real>>(0, 1,
 1, 0) ;
 auto sy = su2<cpx<real>>(0, -j,
 j, 0) ;
 auto sz = su2<cpx<real>>(1, 0,
 0, -1) ;

auto propagator(real x, real t, real f)
 {
 real gamma = sqrt(1+f*f*Ld*Ld/c/c) ;
 real beta = sqrt(gamma*gamma-1) / gamma ;

 return e^(-(1+sx*beta)*(j*sy)*(x-beta*c*t)*gamma*gamma/Ld);}

int main()
{

 int N = 10000 ;
 real L = 10000 ;
 real f = 8.0e6 ;
 real V, I, x ;

 for (int i=0; i<N; i++) {
 x = i * L/N ;
 V = real (
 (psi<real>(1,0) | propagator(x,0,0.90*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,0.92*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,0.94*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,0.96*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,0.98*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.00*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.02*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.04*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.06*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.08*f) | psi<real>(0,1))+
 (psi<real>(1,0) | propagator(x,0,1.10*f) | psi<real>(0,1))
);
 I = real (
 (psi<real>(0,1) | propagator(x,0,0.90*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,0.92*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,0.94*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,0.96*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,0.98*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.00*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.02*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.04*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.06*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.08*f) | psi<real>(0,1))+
 (psi<real>(0,1) | propagator(x,0,1.10*f) | psi<real>(0,1))
);
 cout << x << " " << V << " " << I << endl ;}

}

fxl C++ suite of FFT methods
 v1.2.1(β) / 22.01.2018 Mihai O. Dima, Inst. Nuclear Physics – Romania

Performance

� 71 log(N) ns / sample Cooley-Tukey<double>
� 0.083 N0.79 ns / sample FoxLima<double>

on: proc: x86_64 Intel Xeon E312xx Sandy Bridge @ 2.6 GHz

 cache: 32k, 32k, 4096k

 op-sys: Linux: 2.6.32-504.16.2.el6.x86_64

 gcc: 4.4.7 20120313 (Red Hat 4.4.7-11)

fxl C++ suite of FFT methods

Header file: #include ”fxl.hh“

Libraries: libfxl4.a (static) linux-2.6.32-504.12.2.el6.x86_64
 libfxl4.so (dynamic) gcc-4.4.7 20120313

Class ... fxl<T> std. T = double, long double
 cpx<double>, cpx<long double>

 extra T = mtx<T>

Member variables (public):

� ddc / ddr = T pointers to Np long arrays of “imag” / "real" part
[0 ... +F -F ... 0] (for mtx<T> = A + iB, A,B self-adjoint)

� fzc / fzr = T pointers to Np long arrays of “imag” / "real" part
[-F ... 0 ... +F] (for mtx<T> = A + iB, A,B self-adjoint) after
 the FoxLima filter

� N = int # of Fourier bins = Np
� p = int oversampling ratio
� rms = double signal rms

Constructor (public)
fxl F(T*, T*, N, q, str, ...)
 ^ ^ ^ ^ ^ ^

 | | | | | |_ arg’s for the command (see below)
 | | | | |

 | | | | |_ command
 | | | |

 | | | |_ 2q FFT bins - allows oversampling, p = 2q / N, recommended q:
 | | | q > 3 + log(N) / log(2)
 | | |

 | | |_ # i/p samples
 | |

 | |_ pointer "real"-part (or vec of matrices, symmetrical part)
 |

 |_ pointer "imag"-part (or vec of matrices, anti-symmetrical part)

command = "XX" , or "XX raw" – with XX = F0, F1, F2, F4, F8, F16, GX, FC, FX, FE, FW
 F0 = Cooley-Tukey, -6dB/oct tails, p = 2q / N

F1 = FoxLima-F1 , -6dB/oct tails, p = 2q / N
F2 = FoxLima-F2 , -12dB/oct tails, p = 2q / N, similar to Welch apodisation,

 but w/ exact cancellation of 1 / (f-f0) tails
F4 = FoxLima-F4 , -24dB/oct tails, p = 2q / N, suis-generis Welch-4

 window, but w/ exact cancellation of
 1 / (f-f0)

k tails (for k = 1, 2, 3)
F8 = FoxLima-F8 , -48dB/oct tails, p = 2q / N, suis-generis Welch-8 window
F16= FoxLima-F16 , -96dB/oct tail, p = 2q / N, suis-generis Welch-16
GX = Gaussian(sigma), p = 2q / N, gaussian apodisation

FC = coherent chirp, p = 2q with no windowing, σ size

FX = coherent chirp, p = 2q with Gaussian(σ) window

FE = coherent chirp, p = 2q with back-exp(τ) window

FW = coherent chirp, p = 2q with Welch(σ) window

fxl C++ suite of FFT methods

For the following: λ-3 p = # bins at which smooth function falls -3 dB

 λ-20 p = # bins at which smooth function falls -20 dB

 condition: 1.472 < λ-20 / λ-3 < 4.684

2f0 ∆t = f0 / FSR = chirp coherence-frequency

σchirp = chirp coherence-length # bins

case F0, F1, F2, F4, F8, F16 raw arg = void

F0, F1, F2, F4, F8, F16 smooth arg = λ-3, λ-20

GX raw arg = σ

FC raw arg = 2f0 ∆t, σchirp

FX raw arg = 2f0 ∆t, σchirp

FE raw arg = 2f0 ∆t, τchirp

FW raw arg = 2f0 ∆t, σchirp

GX smooth arg = σ, λ-3, λ-20

FC smooth arg = 2f0 ∆t, σchirp , λ-3, λ-20

FX smooth arg = 2f0 ∆t, σchirp , λ-3, λ-20

FE smooth arg = 2f0 ∆t, τchirp , λ-3, λ-20

FW smooth arg = 2f0 ∆t, σchirp , λ-3, λ-20

Parameters

� fn = (n-Np/2) / Np / T frequency of bin n

� An = √(ddrn
2+ddcn

2) / Np amplitude of bin n (Cooley-Tukey)

 √(fzrn
2 + fzcn

2) / Np - - ‘’ - - (FoxLima)

Resolution

� df / f = 0.7 / int(f T) …...................... frequency resolution
� dA / A = from i/p amplitude resolution

Description

 The fxl class is a suite of D-FFT methods.

COHERENT SIGNALS

 F0 – is the classic Cooley-Tukey algorithm. It receives N time bins and outputs 2q bins,

where p = 2q / N is the (frequency)-oversampling ratio (recommended around x8).
The oversampling solves the imprecision of Cooley-Tukey’s algorithm which for
certain frequencies (periodically in the spectrum) has large errors, missing their
peaks in:

- frequency: δf < 1 / Np∆t,

- amplitude: δA / A < 2p / π,

- phase: δϕ < π / 2p.
It is evident that for p = 1 the errors can be large.
The Cooley-Tukey algorithm has -6 dB/oct fall-off spectrum leakage tails. For certain
peaks, with f = n / T, this is not visible as the sampling occurs exactly at the position
of the zero’s. For all else it is visible in various degrees. Metrologically, the
favourable peaks do not represent the real performance of the algorithm.

fxl C++ suite of FFT methods

 F1 – is a filter to the Cooley-Tukey algorithm. It solves the problem of the Gibbs satellite-

lobes, but has still the spectrum leakage tails, also -6 dB/oct fall-off. Its advantage is
speed, requiring little CPU time.

 F2 – is the best trade-off Cooley-Tukey filter, between thin peak width and Gibbs lobes’

suppression. It has a -12 dB/oct fall-off of spectrum leakage tails. Suppression is
exact with respect to digitisation – in order k = 1 of the 1 / (f-f0)

k tails. It is loosely
equivalent to Welch apodisation, however performed in frequency space rather than
in temporal space.

 F4 – has an advanced rejection of Gibbs lobes and -24 dB/oct fall-off of spectrum

leakage tails. Suppression is exact with respect to digitisation – in orders k = 1, 2, 3
of the 1 / (f-f0)

k tails. It is loosely equivalent to Welch-4 apodisation, however
performed in frequency space rather than in temporal space.

 F8 – has an advanced rejection of Gibbs lobes and -48 dB/oct fall-off of spectrum

leakage tails. It is a Welch-8 apodisation, performed in temporal space. It is
susceptible to spectrum distorsions due to inexact cancellations of digitisation terms
when the signal has large phase noise, or it represents a short temporal sequence.

 F16 – has an advanced rejection of Gibbs lobes and -96 dB/oct fall-off of spectrum

leakage tails. It is a Welch-16 apodisation, performed in temporal space. It is
susceptible to spectrum distorsions due to inexact cancellations of digitisation terms
when the signal has large phase noise, or it represents a short temporal sequence.

 GX – has an advanced rejection of Gibbs lobes and performant fall-off of spectrum

leakage tails. It is a gaussian apodisation, performed in temporal space, of user

given σ.

NOISE SIGNALS

 The signal below seems to have a well defined FFT peak in the spectrum, as being a
single frequency.

The problem however is that its second part is phased 180o behind the first. As such, when
they are added, the FFT signal will be zero.

 This may be mathematically correct, however engineering-wise unsatisfactory: there is a
definite frequency in the spectrum, which needs to be flagged accordingly.

 Similarly, certain sources emit “chirps”, of valid FFT-spectrum, however (usually) at

random time intervals (same ∆ϕ/ω for all frequencies), and possibly also at various phase
lags among frequencies.

 For a given frequency the input sample can be divided into smaller samples and for each
the FFT be computed. The results can be then summed as absolute values. For the
frequency asked this will give the maximum amplitude attainable if all samples are
coherent.

fxl C++ suite of FFT methods

 The problem is that this procedure has
poor resolution. For any FFT the
thinness of the peaks is given by the

sum Σk=1,N-1 exp(2πi(ω-ω0)kT) which gives
an “Airy”-function of frequency resolution

δf = 1 / NT.

 To overcome this, a phase-jump
estimate at f0 is performed, then this is
applied to all other frequencies. This
should be adjusted for frequency drift,
however for those around f0 it is
sufficient (and other distant frequencies
would have entailed too much noise from
the extrapolation anyway).

 This preserves the main mechanism
of FFT computation, the summation of

the above mentioned sum, and hence the resolution of signals – in spite of the small

sample partition (and poor afferent σf apodisation).

 FC – is without windowing of the smaller samples. User given σ and f0.

 FX – is a gaussian apodisation of the smaller samples. User given σ and f0.

 FE – is a back-exponential apodisation of the smaller samples. User given τ and f0.

 FW – is a Welch apodisation of the smaller samples. User given σ and f0.

Performance

 The main advantages of the FoxLima suite are:

1. exact signal metrics – due to the
possibility to oversample in
frequency-space, FoxLima algo-
rithms provide exact peak resolution
over Cooley-Tukey, that can register
errors of up to:

o ∆f = 1 / 2N∆t in frequency

o ∆A = 36% A in amplitude

o ∆ϕ = 90o in phase

These aspects can be seen in the
figure above, and the figure to the
right, where the sub-sampling
problem of the Cooley-Tukey
algorithm are evidentiated as peak
truncation, or central-frequency
imprecision.

fxl C++ suite of FFT methods

2. exact leakage elimination – due to
its Fourier-space apodisation,
algorithms F1, F2 and F4
eliminate exactly the 1 / (f-f0)

k
spectrum-leakage tails for:

o k = 0 (F1 algorithm)
o k = 1 (F2 algorithm) and
o k = 1,2,3 (F4 algorithm).

The figure to the right shows
smoothed versions of the
algorithms for width and tail fall-
off.

The 3 Fourier-space apodisation
algorithms have fall-offs of:

o -6 dB/oct (F1 algorithm)
o -12 dB/oct (F2 algorithm)
o -24 dB/oct (F4 algorithm).

It is important to note, that time-
space apodisation does not take
into account discretisation
components exactly as does
Fourier-space apodisation.

 Therefore signals with phase-

noise, or a short time data-
acquisition window are not
described as exact by time-space
apodisation algorithms.

This is shown in the figure here to
the left – on a short time-window
(of 6 x 50 Hz periods).

The F8 algorithm has significant
deviations beyond the central-

peak, whereas F2 and F4 are both very precise.

3. Weyl-Wigner FFT – as mentioned above, random-chirp signals may deceivingly add
destructively showing little (or no signal at all) at certain frequencies.

 The Weyl-Wigner algorithms add coherently such signals around a (user given)

coherence frequency (f0), of sampling window (the approximate size of the chirp, σ).

 A comparison with the F2 algorithm (on a noise signal) is given in the figure here
below.

fxl C++ suite of FFT methods

 A small presence in F2, with a
large one in WW denotes
significant cancellation (or phase
noise).

 The apodisation over the σ
window is:

o FC – plain Cooley-Tukey
o FX – gaussian
o FW – Welch
o FE – back-exponential

 The apodisation used in the
figure here is gaussian.

